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A new simulation code using the hybrid approximation for modeling extrater-
restrial plasma processes is described, which can be used in an arbitrary three-
dimensional, ordered, hexahedral grid. Maxwell’s equations are transformed using
common tensor analysis and solved by a finite differencing scheme. A particle coa-
lescing technique was adopted to account for differences in cell size. The numerical
techniques and some results are presented. c© 2002 Elsevier Science (USA)
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1. INTRODUCTION

The hybrid approximation of a plasma is a combination of a full particle approach and
a fluid approach. It models the plasma dynamics by treating the ions as particles and the
electrons as a charge-neutralizing fluid.

The earliest versions used massless electrons and an isothermal equation of state in
one dimension [21], which were soon extended up to two spatial dimensions [4, 11, 12].
Furthermore, models taking the electron inertia into account have been developed in one
[16] and two [13] dimensions.

Later several authors introduced the hybrid technique to the field of astrophysics and
simulated collision-free shock waves [24, 32]. An introduction of a two-dimensional code
can be found in [32, 33]. At this time also several improvements to the numerical algorithm
were proposed, like the predictor–corrector scheme of Harned [11], the so-called “substep-
ping” for the integration of the magnetic field equation [31], a “moment method” applying
a fourth-order Runge–Kutta scheme in two dimensions [35], and implicit schemes for the
calculation of the electric field with the three-dimensional code QN3D [14]. Brecht and
Thomas extended Harned’s algorithm to three spatial dimensions [3].

At the beginning of the last decade Matthews combined some of these ideas to develop
a new method for the integration of the field equations, the so-called “current advancement
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method” (CAM) [22], and implemented this in a two-dimensional code with massless
electrons. A more recent two-dimensional code with finite electron mass was developed
by Shay et al. [29] and also Lipatov and Buechner [17], who furthermore uses an implicit
scheme for solving the field equations, which was already extended to three dimensions [17].

A general introduction to the topic of hybrid code simulation can be found in [34].
All mentioned codes use a Cartesian or at least orthogonal grid for simulation. The only

one which uses a nonorthogonal grid is the code by Swift [30], which is based mainly on
the method of Harned [11]. To solve the field equations in a curvilinear grid, the method of
Madsen [20] was adopted.

In view of the upcoming Rosetta mission, simulations of the interaction of solar wind
plasma with the cometary coma seems desirable. It quickly became clear in earlier simu-
lations using the fluid model in two dimensions [2, 19] that the draping of the magnetic
field lines in front of the nucleus is not modeled correctly by two-dimensional models.
Three-dimensional fluid simulations of this problem were done by Fischer [8] and hybrid
simulations by Lipatov et al. [18]. These results suggest that the large tail structures may
be influenced strongly by much smaller scale processes in the vicinity of the nucleus.
Therefore it is necessary to increase the local resolution near the nucleus, which can only be
done using a code with a nonorthogonal simulation grid. The technical details of this new
code, which is mainly based upon the algorithm of Matthews [22] for time integration and
the method of Eastwood et al. [7] for the spatial derivations, are described in the following
sections.

2. BASIC EQUATIONS

2.1. Hybrid Model Equations

The hybrid model assumes the electrons to be a masseless, charge-neutralizing fluid,
whereas the ions are simply treated as macroparticles, which models physical structures
within a time scale below the inverse lower hybrid frequency.

The assumption of a massless electron fluid yields a momentum equation,

neme
due

dt
= 0 = −neeE + Je × B − ∇ pe + neme�ei (uion − ue), (1)

where the l.h.s. is zero, due to the assumption of massless electrons (me = 0). ue and
uion are the bulk velocities of the electrons and ions, respectively. �ei is the anomalous ion–
electron collision frequency, which may arise, for example, from microscopic wave-particle
scattering. From (1) one obtains an expression for the electric field E, and together with
Faraday’s law, the quasineutrality condition ni = ne and J = Jion + Je = ni euion − neeue,
one obtains a partial differential equation for the time development of the magnetic field in
the form

∂B
∂t

= curl
Jion × B

�c︸ ︷︷ ︸
kinetic term

− curl
curl B × B

�0�c︸ ︷︷ ︸
Hall term

− � curl
curl B

�c︸ ︷︷ ︸
resistive term

, (2)

where the displacement current is neglected. � is a parameter depending on �ei . �c and Jion

are the charge and current density of the ions, respectively.
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For the ions the equations of motion

dxp

dt
= vp,

dvp

dt
= qp

m p
(E′ + vp × B) (3)

have to be solved, where the index “p” runs through all particles which may have different
charges qp and masses m p. To conserve momentum one has to use E′ = E − �/�c curl B
in the above equation.

To close this set of equations the kinetic electron pressure is assumed to be adiabatic; i.e.,

pe = pe0

(
�e

�e0

)�

, (4)

where �e is the electron charge density and � is the adiabatic exponent. �e0 and pe0 are the
initial background quantities.

2.2. Normalization Units

All quantities used in the simulation and in the following results are normalized; e.g.,

A∗ = A

A0
,

where A is some physical quantity, A∗ is the dimensionless quantity used in the simulation,
and A0 is an appropriate normalization value.

In our code we use the following normalization values:

B0 background magnetic field
n0 background ion density
t0 = �−1

i �i background ion gyrofrequency
x0 = c/�p,i �p,i background ion plasma frequency
v0 = vA, vA background Alfvén velocity
J0 = evAn0 e electron charge (e > 0)
p0 = B2

0/2�0

3. NUMERICAL SCHEME

3.1. Time Integration Scheme

The time integration scheme for solving Eqs. (2) and (3) is mainly adopted by the code
described in [22]. The main steps are briefly described here for reference. For given particle
positions xn

p at a time step n, for their velocities vn+1/2
p at the half time step n + 1/2, and

for the magnetic field Bn at time step n, one computing cycle proceeds as follows:

1. Calculate the charge densities � n
c at each gridpoint from xn

p and currents Jn+1/2
ion from

vn+1/2
p .
2. Update positions xn

p to xn+1
p according to Eq. (3) via a leapfrog scheme using vn+1/2

p .
3. Calculate �n+1

c from xn+1
p and � n+1/2

c = 1/2(� n
c + � n+1

c ).

4. Update the magnetic field from Bn to Bn+1 using � n+1/2
c and Jn+1/2

ion according to
Eq. (2). This is done with a smaller time step and a cyclic leapfrog method, as described in
[22].



3D HYBRID SIMULATION CODE 473

5. Extrapolate Jn+1/2
ion to Jn+1

ion using the “current advancement method” (CAM) described
in [22].

6. Calculate the electric field En+1 from Eq. (1) and update velocities from vn+1/2
p to

vn+3/2
p according to Eq. (3). To do so, one must of course interpolate the electromagnetic

field quantities from the simulation grid onto the individual particle positions.

Steps 1, 2, 3, and 6 are described in Section 3.4 and step 4 is described in 3.2. See [22]
for a discussion of step 5. There it is also shown that this whole scheme is of second-order
accuracy.

3.2. Finite Differencing in Curvilinear Coordinates

The simulation code needs as input the location of each gridpoint in physical space. The
grid has to be hexahedral (each cell has six faces) and ordered, so that each gridpoint can
be described by the indices q, r, s. Let the grid point positions be rqrs .

For the formulation of the scheme described above in this arbitrary grid, a method similar
to that used by [7] is adopted. In principal, all equations are rewritten coordinate independent
using common tensor calculus.

First of all, internal coordinates x̃ i are defined, where i = 1, 2, 3. The integer part [x̃ i ]
corresponds to the cell indices q, r, s, in which this point is located. � i = x̃ i − [x̃ i ] gives
the relative position in this cell.

Any function defined on the grid points fqrs (which may also be a vector function) can
be linearly interpolated to any point inside the cell by

f (x̃ i ) =
1∑

a=0

1∑
b=0

1∑
c=0

fq+a,r+b,s+cwa(�1)wb(�2)wc(�3), (5)

with

w0(z) = 1 − z and w1(z) = z. (6)

The coordinate transformation x(x̃ i ) is then given by Eq. (5) using rqrs for fqrs . Three
covariant basis vectors are defined for each grid point either by

b1,qrs = rq+1,r,s − rqrs, b2,qrs = rq,r+1,s − rqrs, b3,qrs = rq,r,s+1 − rqrs (7)

or, if the rqrs are given by some analytical formula rqrs = f(x̃1, x̃2, x̃3), by

bi = ∂f
∂ x̃ i

. (8)

From these bi the contravariant basis vectors and the metric tensor elements

bi = b j × bk√
g

, gi j = bi · b j , gi j = bi · b j ,
√

g = det gi j (9)

can be obtained for each grid point (the index qrs was suppressed). Whether all these
quantities are precomputed before a simulation run or each time they are needed is a
question of calculation cost and memory usage. It turned out to be a good compromise
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to calculate at least the gi j and bi in advance, because the bi can be computed relatively
quickly.

Using these local basis vectors each physical vector can be expressed by means of its co-
and contravariant components via

A = Ai bi , Ai = bi · A or A = Ai bi , Ai = bi · A. (10)

The common vector operations are then given by

(A × B)i = 	i jk

√
g

A j Bk, (A × B)i = √
g 	i jk A j Bk, (11)

(curl A)i = 	i jk

√
g

∂

∂ x̃ j
Ak, (12)

with 	i jk = 	i jk being the Levi–Civita symbol.
Applying this to Eq. (2) yields an expression for the time development of the contravariant

components of B:

∂ Bi

∂t
= 	i jk

√
g

∂

∂ x̃ j

(√
g

�c
	klm J l

ion Bm − 	klm	lnp(∂ Bp/∂ x̃ n) · Bm

�0�c

−�
gkl(	lmn/

√
g)(∂ Bm/∂ x̃ n)

�c

)
. (13)

The r.h.s. can now be easily computed by common finite difference schemes. Note that
both the co- and contravariant components of B have to be known at each integration step.
In the current version, therefore, at the beginning of each calculation cycle, the physical
components of B are transformed to the co- and contravariant components, Eq. (13) is
integrated (where the covariant Bi is calculated from the updated Bi after each step), and,
after this, the result is transformed back into physical components, which is advantageous
for the calculation of the Lorentz force in Eq. (3). For the calculation of the electric field
the same transformation in the local coordinate system applies.

3.3. Finite Differencing Scheme

For the discretization of Eq. (13) two methods may be applied. Usually one computes the
bracket (it is mainly E) on an interlaced grid. This applies particularly to full particle codes
when the whole set of Maxwell’s equations has to be solved. Then the interlaced gridpoints
guarantee correct expressions for the second-order derivatives of B.

In the approximation underlying Eq. (13), however, the equation for B can be solved
directly without any interlaced grid points and with the same accuracy up to second order.
To illustrate this, a brief discussion of the most complicated term in Eq. (13), the Hall term,
will be given.

Neglecting
√

g and �c (which may be assumed constant for the following analysis), one
component of the Hall term has the form

∂

∂ x̃1

(
∂ B2

∂ x̃1
B1

)
. (14)
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An accuracy analysis using B1 = exp(ik1 x̃1) and B2 = exp(ik2 x̃1) yields

∂

∂ x̃1

(
∂ B2

∂ x̃1
B1

)
= −k2(k1 + k2) exp(ik1 x̃1 + ik2 x̃1) (15)

as the analytical result.
Taking (14) as it is, calculating the inner derivative on interlaced grid points, multiplying

with an interpolated B1 on these points, and then calculating the outer derivative back on
the integer grid points yields

[−k2(k1 + k2) + O4(k1
) + O4(k2
) + O4(k1
 + k2
)] exp(ik1 x̃1 + ik2 x̃1). (16)

When not using interlaced grid points one has to manipulate (14) analytically and calculate

B1 ∂2

(∂ x̃1)2
B2 + ∂

∂ x̃1
B1 · ∂

∂ x̃1
B2. (17)

Taking (17) and calculating all derivatives with the common centered differencing scheme
yields

[
−k2(k1 + k2) + O4(k2
) + k1


(k2
)3

6
+ k2


(k2
)3

6
+ · · ·

]
exp(ik1 x̃1 + ik2 x̃1). (18)

Comparison of (16) and (18) shows that the two methods have the same accuracy up to the
fourth order in k
, where 
 is the grid point distance. A similar statement holds for all
components in Eq. (13). Therefore it is possible to solve Eq. (13) using no interlaced grid
points without losing accuracy. This is advantageous because an interlaced grid would need
much more storage capacity (e.g., for storing the gi j components). Moreover it is not quite
clear how to do the interpolation needed in obtaining (16) in curvilinear coordinates.

However, because using interlaced grid points has become such a standard technique, we
tested both methods, which yielded no visible differences in the results, what confirms the
above arguments.

3.4. Treatment of Particles

3.4.1. Particle Movement

The solution of the equations of motion (3) for each particle is based on the leapfrog
scheme and consists of two steps, namely the position update and the velocity update. Both
steps have to be done in the transformed coordinate system.

In the following the particle index p at x̃ i and v is suppressed.
The position update is straightforward. For each particle the local coordinates x̃ i are

stored, as is the vector of its velocity v in physical components. From v the contravariant
components can be computed with the contravariant local basis vectors at the position x̃ i .
This local basis is obtained by Eq. (5) using the basis vectors from Eq. (7) at each grid point
for f . With these contravariant components vi the position update takes the form

x̃ i,n+1 = x̃ i,n + vi,n+1/2 · 
t. (19)
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The problem is to obtain the vi,n+1/2 = bi (x̃ i,n+1/2) · vn+1/2. To do this one has to interpolate
the basis vectors to the position x̃ i,n+1/2 at the half time step, which is not known. Three
solutions can be applied. The most simple one is to take x̃ i,n as an approximation for x̃ i,n+1/2.
This of course introduces an error which becomes larger the more the grid differs from the
Cartesian form. The second possibility is to solve Eq. (19) iteratively, which has a huge cost
in the form of computing time. The third possibility is to calculate the physical coordinates
of the particle position, update these coordinates using the physical components of the
velocity, and find the new x̃ i,n+1 by inverting Eq. (5). This inversion can also be done only
iteratively, but with less computing time than the second method.

The first and last method have been tested. Almost no difference for typical cases was
found. Of course, one has to keep in mind the fact that the first (and fastest) method can
cause trouble when either the curvature of the grid or the time step becomes large. For the
results presented here, the last method was applied.

For the velocity update the electromagnetic field vectors have to be interpolated from the
grid points to the actual particle position using the same method as for the basis vectors. To
achieve second-order accuracy Eq. (3) is discretized in time by

vn+1/2 = vn−1/2 + qp
t

m p
(E′n + vn × Bn) with vn = 1

2

(
vn−1/2 + vn+1/2

)
. (20)

This semi-implicit formula can be solved analytically for vn+1/2 (cf. [9]). Since the result
is rather complicated, it is convenient to do the necessary calculations with the physical
components of the corresponding vectors. This is the reason for transforming B back into
physical components after each time step.

3.4.2. Adaptive PIC Method

The collection of the moments �qrs and Jqrs from the particle positions and velocities
proceeds in the local coordinate system similarly to the common PIC method used in a
Cartesian grid. For collecting the charge density one has to add


�q+a,r+b,s+c = qp√
gqrs

wa(�1)wb(�2)wc(�3), (a, b, c = 0, 1), (21)

to the eight corner grid points of the cell in which the particle is located. Note that the only
difference to the Cartesian case is the factor 1/

√
gqrs . Of course, if the number density of

the particles is constant in physical space, there are more particles in a larger cell than in a
smaller one. Therefore, one has to divide by the cell volume to get constant values for �qrs .

However, the main purpose of a curvilinear grid is to have a higher resolution in one part
of the simulation area. Assume a grid like that shown in Fig. 1. One has to put a certain
number of particles in the leftmost cells. The number density in physical space at the start
of the simulation has to be constant. Therefore, in the larger cells a huge number of particles
are located. This is even worse in three dimensions. Of course, this leads to a huge loss of
computing efficiency. To overcome this, one can use particle coalescence as described in
[15], or use particles with variable size in phase space (the “blob method”) [6].

In [15] a detailed proof is given for the possibility of splitting one particle into two while
preserving the first three moments of the distribution function when linear weighting is



3D HYBRID SIMULATION CODE 477

FIG. 1. Schematic sketch of the adaptive PIC method. In the grey “averaging zone” two incoming particles
are replaced by one with twice the charge and mass. In an actual simulation more than one of these zones can be
applied.

used, as was done here. Furthermore, it is mentioned there that this splitting can be exactly
inverted (i.e., two particles coalesce into one, preserving energy and momentum) if they have
equal velocity. For particles with similar velocity this can be still achieved approximately.
This is demonstrated in [15].

As the purpose of our code is mainly to use a grid like that shown in Fig. 1, only the
particle coalescence is needed to control the number of particles in a cell. We therefore use
a method which is based upon the more general method mentioned above and optimized
for the special geometry of Fig. 1.

Several “averaging areas” along the flow direction in the simulation box are chosen, as
sketched in Fig. 1. If a particle enters such an area, a “partner” is searched for, which is
located nearby in phase space (a more detailed investigation is given in the next subsection).
If such a particle is found, these two are deleted, averaged in phase space, and replaced by
a particle with twice the charge and mass, i.e., twice the “numerical weight.” To keep this
transition smooth, a probability for this process is introduced, which rises linearly from 0
to 1 along the averaging zone.

It would be a N 2 process to find a suitable partner for the averaging process if one searched
over the whole particle list each time. Because this is too expensive, another search strategy
is applied. If a particle enters the averaging zone it is put on a “search list.” The next particle
entering the same zone looks only on this search list for a partner. If no partner is found,
it puts itself at the end of this search list. This is done during the particle position update
cycle.

Generally this kind of particle coalescence introduces noise to the moments of the dis-
tribution function, i.e., for the densitites and currents collected on the grid. For linear PIC
weighting this noise is proportional to 1/

√
N , when N is the number of particles per cell.

With no particle coalescence N is proportional to the cell volume V = √
gi jk . To keep a
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noise level, which is at least smaller than that at the left boundary the “averaging zones”
have to be placed at intervals where the cell volume rises by a factor of

√
2, because N is

approximately halved in each “averaging zone.”
It is clear that this whole method is only effective for a grid like the one in Fig. 1 if the

particles move generally from left to right, which applies to a wide range of plasma flow
problems and their interaction with obstacles.

3.4.3. Energy Conservation

The averaging process described above will be investigated in more detail here. Let v1

and v2 be the velocities of two particles with mass m. The resulting “combined” particle
then has a mass of 2m and a velocity of 1/2 (v1 + v2). This conserves momentum, but the
overall energy decreases, since

2m

[
1

2
(v1 + v2)

]2

≤ m
(
v2

1 + v2
2

) ⇔ v1 · v2 ≤ 1

2
v2

1 + 1

2
v2

2,

which is always fulfilled. It is clear that this energy loss becomes smaller if the two velocity
vectors differ less. Therefore, only particles are involved in the average process which fulfill
the condition

|v1 − v2|2 < 
 · v2
th and |x1 − x2| < �, (22)

where v2
th is the initial mean average square of the velocity distribution and 
, � are two

parameters which have to be chosen properly.
� is normally taken to be one or two cell sizes. For a reasonable choice of 
 refer to Fig. 2.

This figure shows (a) the energy loss and (b) the efficiency of the averaging process for two
extreme values of 
. The simulation was done in a 2D Cartesian grid with 200 particles
per cell. For 
 = 0.1, almost no energy loss occurs, but only about 60% of the particles are
actually averaged. For 
 = 0.5, almost all particles are averaged but there occurs a huge
loss of energy, about 8%. Typically a value of 
 = 0.2 was used in the simulations.

FIG. 2. Energy loss due to phase space averaging of particles. (a) Mean square of thermal velocity for two
different values of 
 (see text). (b) Density of particles which are not involved in the averaging process.
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3.4.4. Particle Initialization

To achieve a uniform particle density with the least possible noise, at the beginning each
cell is filled with particles rather than the particles being distributed globally.

First, the code searches for the smallest cell with volume V0. In this cell P0 particles
should be placed. P0 is mostly chosen to be about 20 for 3D and 50 in 2D. From this the
charge and mass of these superparticles can be calculated to yield the desired charge density.
In all other cells Pqrs = P · (

√
gqrs/V0) particles should be placed. In general Pqrs is a real

number, which has to be rounded up or down to yield just Pqrs in the average.
The particles in a particular cell are equally distributed with respect to the internal coordi-

nates x̃ i . This, of course, yields a nonuniform distribution in physical space if the cell is non-
orthogonal. However, this error is completely negligible compared to the noise introduced
by the particle method itself.

For the particles’ velocities a three-dimensional Maxwellian distribution is applied. This
defines an ion temperature by the mean thermal velocity square v2

th, which is related to
the usual plasma ion beta via �ion = v2

th/v
2
A. The electron temperature is defined by the

parameter pe0 in Eq. (4), which is just �e/2 in normalized units.

3.5. Boundary Conditions

For each boundary three different types of behavior can be chosen: periodic, inflow, and
outflow conditions.

A periodic boundary is only possible for two parallel boundaries of the same size. It is
applied in the same way as for a Cartesian grid.

At an outflow boundary the crossing particles are simply deleted and the field values
are extrapolated. In the present version no absorbing boundaries are included, because the
investigated problems always dealt with high Mach number flows, where no waves can
travel upstream.

At an inflow boundary the field values are kept constant. New particles have to be inserted
at each time step. For an orthogonal cell this is simple, since the volume which has to be filled
is a slice of this cell, which is again simply an orthogonal volume. For a nonorthogonal cell
this volume is more complicated and it is difficult to place the particles inside this volume
with the correct distribution function. Therefore, after each time step all particles inside an
inflow cell are deleted and the whole cell is filled with new particles.

4. RESULTS

4.1. Test Run—Wave Propagation

The purpose of this section is to demonstrate that the new code presented here reproduces
well-known results from linear MHD wave theory. Therefore a number of 1D simulations
with periodic boundary conditions have been performed, each with a different angle �

between the initial magnetic field and the x-axis.
The simulations used 200 cells of length 
x = 0.2c/�p,i and ran for 1500 time steps

with 
t = 0.2�−1
i . The initial magnetic field was chosen to be

B = (B0 cos(�), B0 sin(�), 0), (23)

with B0 = 1 (in normalized units). A harmonic perturbance with an amplitude of 10% of the
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FIG. 3. Test of linear wave propagation. (a) Fourier power spectrum of transverse magnetic field component
Bz for � = 30◦. (b) Same as (a) for ion density �c . (c) Friedrichs diagram for the resulting propagation velocities
calculated from spectra like that in (a) and (b) for different angles � (markers) and the results of linear wave theory
(solid lines). See text for more details and parameters.

background field was superimposed in the z-component of B with a wavelength according
to k = /4. For the plasma betas, �i = 0.1 and �e = 0.8 were chosen, yielding a sound
velocity of

cs =
√

�i + �e

2
vA ≈ 0.67vA. (24)

The z-component of B and the ion density �c were recorded for all cells at each time step.
After the run finished a Fourier analysis was applied to both data sets, yielding a power
spectrum for the chosen k-value, as shown in Figs. 3a and 3b. Three different peaks can be
clearly distinguished. The two magnetosonic wave modes are visible mainly in the density
fluctuations, whereas the Alfvén mode is very pronounced in the transverse magnetic field
fluctuations, as one would expect. From these spectra the frequencies of each mode were
measured and the linear propagation velocity was calculated, and plotted as a Friedrichs
diagram in Fig. 3c. The solid lines in this plot represent the prediction of linear wave theory
(cf. [5]). The agreement is reasonable with some small statistical error, probably due to the
rather low resolution in �-space.

4.2. Comet Wirtanen

As an example of the results obtained with the new code we present a 2D simulation
run for comet Wirtanen at 3AU. The purpose is to show the new possibilities which can be
achieved by using the described numerical techniques. Detailed physical interpretation and
more results can be found in [1].

4.2.1. Model

The plasma surrounding of a comet is formed by the interaction of the cometary ions
(produced by UV ionization of the neutral gas coma) with the solar wind.

The solar wind is determined by its proton number density n0, the background magnetic
field strength B0, the ratio of thermal pressure to magnetic pressure of the ions and electrons



3D HYBRID SIMULATION CODE 481

FIG. 4. Results from a 2D simulation of the plasma environment near the nucleus of comet Wirtanen at
3AU. The solar wind flows from left to right, with a background magnetic field perpendicular to the shown plane
(pointing inward). (a) Magnetic field strength B/B0, B0 = 1.2 nT. (b) Cometary ion density n/n0, n0 = 0.8 cm−3.
(Parameters) Alfvénic Mach number MA = 10, �i = �e = 0.3, time step 
t = 0.01�−1

i . Simulation box size is
Lx = L y = 18x0 (x0 ≈ 250 km) with 100 × 100 cells. Each cell is initialized with P0 = 40 superparticles. The
picture was taken after 2000 simulation steps (t = 20�−1

i , �−1
i ≈ 9 s). See text for parameters of the comet.

�i , �e, and the Alfvénic Mach number MA. The parameters at 3AU were obtained by fitting
the measurements of Voyager 2 and IMP-8 [26, 27] using the Parker model [25]. The
parameters are given in the caption of Fig. 4.

In our simulations we choose a frame where the comet is at rest. The solar wind flows
along the x-axis from left to right. The background magnetic field is directed perpendicular
to the simulation plane (pointing inward), which is a good assumption for 3AU. The solar
wind protons are described by a number of superparticles having an initial velocity MA in
x-direction and a superimposed thermal velocity distribution according to �i . At the start
the simulation box is filled with these particles. During the run new particles are inserted at
the inflow boundary to the left, whereas particles crossing the outflow boundary at the right
are deleted. The upper and lower boundary are also treated as inflow boundaries, which
turned out to be the most simple and stable boundary condition in this case.

The comet is modeled as a source of heavy ions. The largest contribution arises from the
UV ionization of sublimated water molecules, yielding mainly O+ ions. Assuming a spher-
ical symmetric neutral gas coma which extends with a velocity v0, one can derive the spatial
charge density distribution �h(r ) of newly produced ions per time unit (cf. [1, 18]); i.e.,

d�h(r )

dt
= e�G

4r2v0
exp

(
− �

v0
(r − a)

)
, (25)

where r, G, �, and a are the distance from the nucleus, the neutral gas production rate, the
ionization rate, and the radius of the cometary nucleus, respectively. The parameter a is
chosen larger than in reality (a = 0.1x0 ≈ 25 km), because otherwise the 1/r2 dependence
in two dimensions yields gradients too steep in the center of the coma, leading to unphysical
results.
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During the simulation run each time step Nh = 600 superparticles are placed inside the
simulation box to yield the charge distribution gain given above. For the O+ ions under con-
sideration, the charge to mass ratio is 16 in normalized simulation units (where m p = e = 1).
The physical parameters for comet Wirtanen used in the simulations are G ≈ 3 × 1025 s−1

[28], � = 10−6 s−1 [10, 23], and v0 = 1 km/s (thermal velocity at sublimation temperature
of ice).

4.2.2. Grids

Two simulation runs with the same physical parameters but different scales and grids
were performed.

The first run (Fig. 4) uses a Cartesian grid with 100 × 100 cells and a box size of
Lx = L y = 18x0 ≈ 4500 km.

For the second run (Fig. 5) all physical parameters are the same, but the simulation box
was chosen as sketched in Fig. 1. The whole simulation box consists also of 100 × 100 cells.
The outer, rectangular box has the dimensions Lx = L y = 60x0 ≈ 15,000 km. However, the
resolution near the nuclues is about the same as in the first run.

The position of the grid points are given by

ri jk =
{

X + (Lx − X ) · s,

(
j · L y

gy
− L y

2

)
· s,

(
k · Lz

gz
− Lz

2

)
· s

}
, (26)

with

s = s0 · 
i , 
 = s−1/gx
0 , s0 = X

X − Lx
, (27)

where gx , gy, gz are the number of cells in each direction and X is the x-coordinate, where
all grid lines would intersect.

FIG. 5. Same as Fig. 4 but for a nonorthogonal grid and a much larger scale. The particle coalescence method
was used with three equidistant averaging zones along the x-axis. Note that all details from Fig. 4 are well resolved
in the vicinity of the nucleus, but also the large-scale structure of the nonlinear, split Mach cones is obtained.
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Along the x-axis three equidistant “averaging zones” (each three cells in width) are
placed. Both runs use P0 = 40 particles per cell, which yields about 4 million particles for
the first run and about 5 million particles for the second run. The computational effort for
both runs is therefore almost the same. However, the numerical overhead for the particle
coalescence process slightly increases the computation time for the second run.

4.2.3. Results

As already stated, only a short physical description of the simulation results is given here.
More details can be found in [1].

First of all, the cometary ions are picked up by the solar wind due to the Lorentz force.
This force acts perpendicularly to the magnetic field and the solar wind flow direction,
forcing the cometary ions on a cycloidal trajectory moving “downward” as can be seen in
Figs. 4b and 5b. Although this type of plasma tail, typical for weak comets, has not yet been
observed, it is a well-known fact from bi-ion fluid simulations [2, 18, 19].

The magnetic field lines drape around the obstacle, which leads to an increase in the
magnetic flux density directly in front of and in the coma. For an even weaker comet a
classical Mach cone would be formed behind the obstacle, with a depression of the magnetic
field below and a compression above the obstacle. In the case shown in Figs. 4a and 5a,
nonlinear phenomena give rise to a formation of multiple compression cones. The physical
details of this process are also discussed in [1]. Such a Mach cone splitting has also been
obtained from other hybrid simulations [18] but not in MHD simulations, implying that this
is a kinetic effect.

This phenomena can only be resolved well if the resolution near the cometary nucleus is
high enough. However, then only the onset of this splitting can be obtained, as in Fig. 4a;
the large scale structure is not accessible, because the box has to be kept small. With the new
code presented here we can resolve the processes near the nucleus well enough and also get
a picture of the large-scale structure (Fig. 5a). To get the same picture with a Cartesian grid
one would need approximately (60/18)2 ≈ 10 times more cells and particles and, therefore,
storage capacity.

5. SUMMARY

A new 3D hybrid simulation code was described, which is capable of using arbitrary,
curvilinear grids. The code uses the approximations of massless electrons and quasineutral-
ity and neglects displacement currents. The time integration scheme for Maxwell’s equations
and the particle movement is based on Matthews’ scheme described in [22].

The solution of Maxwell’s equations is done by a transformation using common tensor
analysis and a finite differencing scheme.

Because in an arbitrary grid the cell sizes may differ, the known PIC method has the
disadvantage of large differences in the total number of particles in each cell. For a special
type of grid this problem has been overcome by introducing a so-called averaging zone,
where particles are collected in pairs to yield a new particle with twice the numerical weight
to reduce the overall number of particles in areas with a larger cell size. This method has the
disadvantage of not conserving energy exactly, but it was shown that the numerical error
can be kept small.
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The advantage of using a non-Cartesian grid is to enhance the resolution where necessary
and leave out regions where the background plasma is undisturbed, which saves a lot in
computing costs. This has been demonstrated for the example of comet Wirtanen at a
distance of 3AU from the sun. However, the numerical overhead produced by the more
complicated equations and methods reduces the profit. Therefore, the overall computing
time is not reduced significantly, whereas the overall storage capacity needed decreases
drastically, which is an important factor in 3D simulations.

The code was tested in various ways for correct numerical and physical behavior. The
comparison between a small-scale Cartesian and a large-scale curvilinear grid using the
full capability of the code, as well as some lD results for linear wave propagation, have
been presented. Meanwhile the code has been applied to various problems in the field of
solar wind interaction with small ionospheric obstacles, especially comets. From these runs
we experienced the code to be stable and accurate. The results will be presented in further
publications.
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